Network Systems
Science & Advanced
Computing

Biocomplexity Institute & Initiative

University of Virginia

Estimation of COVID-19 Impact in Virginia

June 22nd, 2022

(data current to June 18th – June 21st)
Biocomplexity Institute Technical report: TR BI-2022-1605

BIOCOMPLEXITY INSTITUTE

biocomplexity.virginia.edu

About Us

- Biocomplexity Institute at the University of Virginia
 - Using big data and simulations to understand massively interactive systems and solve societal problems
- Over 20 years of crafting and analyzing infectious disease models
 - Pandemic response for Influenza, Ebola, Zika, and others

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe marathe@virginia.edu

Chris Barrett@virginia.edu

Model Development, Outbreak Analytics, and Delivery Team

Przemyslaw Porebski, Joseph Outten, Brian Klahn, Alex Telionis, Srinivasan Venkatramanan, Bryan Lewis, Aniruddha Adiga, Hannah Baek, Chris Barrett, Jiangzhuo Chen, Patrick Corbett, Stephen Eubank, Galen Harrison, Ben Hurt, Dustin Machi, Achla Marathe, Madhav Marathe, Mark Orr, Akhil Peddireddy, Erin Raymond, James Schlitt, Anil Vullikanti,

Lijing Wang, James Walke, Andrew Warren, Amanda Wilson, Dawen Xie

Overview

• Goal: Understand impact of COVID-19 mitigations in Virginia

Approach:

- Calibrate explanatory mechanistic model to observed cases
- Project based on scenarios for next 4 months
- Consider a range of possible mitigation effects in "what-if" scenarios

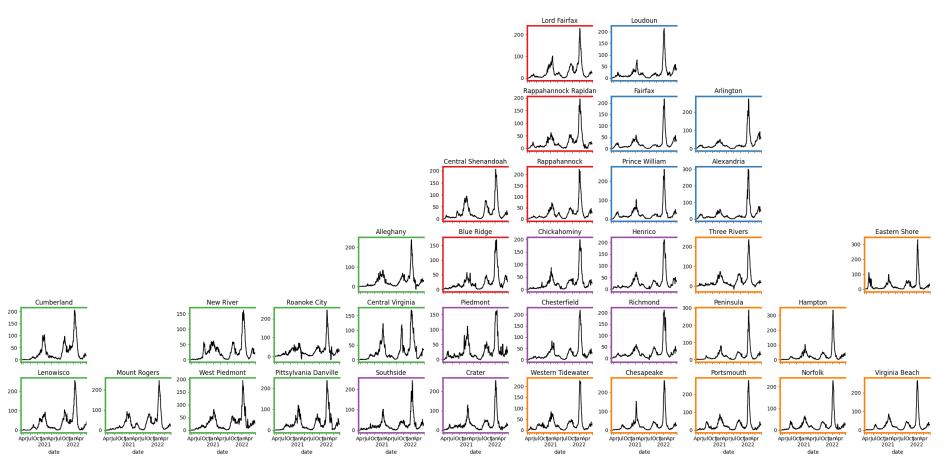
Outcomes:

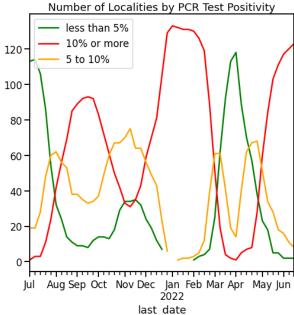
- Ill, Confirmed, Hospitalized, ICU, Ventilated, Death
- Geographic spread over time, case counts, healthcare burdens

Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- Case rates remain high but are slowly declining, hospitalizations have started to decline
- VA 7-day mean daily case rate down to 29/100K from 34/100K
 - US has flattened, only slightly up to 30/100K from 29/100K
 - VA hospital occupancy (rolling 7 day mean of 544) has declined slightly after a couple weeks in a plateau
- Omicron sub-variants BA.4 and BA.5 continue to grow with BA.5 starting to outpace BA.4
- Model projections from last week remain on target


The situation continues to change. Models continue to be updated regularly.


24-Jun-22

Situation Assessment

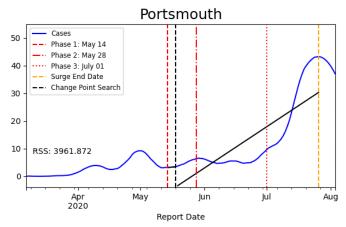
Case Rates (per 100k) and Test Positivity

County level RT-PCR test positivity

Green: <5.0% (or <20 tests in past 14 days)

Orange: 5.0%-10.0% (or <500 tests and <2000 tests/100k and >10% positivity over 14 days)

Red: >10.0% (and not "Green" or "Yellow")

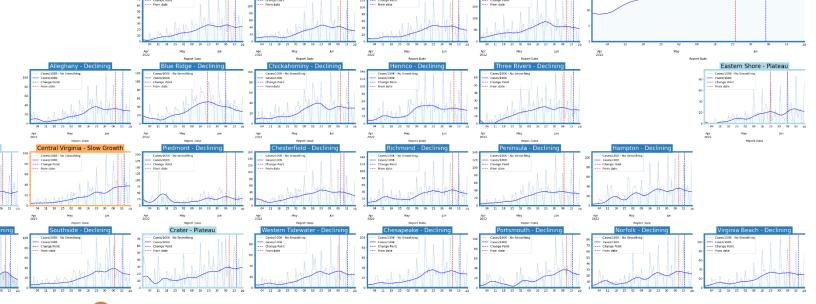

MUNIVERSITY of VIRGINIA

District Trajectories

Goal: Define epochs of a Health District's COVID-19 incidence to characterize the current trajectory

Method: Find recent peak and use hockey stick fit to find inflection point afterwards, then use this period's slope to define the trajectory

Hockey stick fit

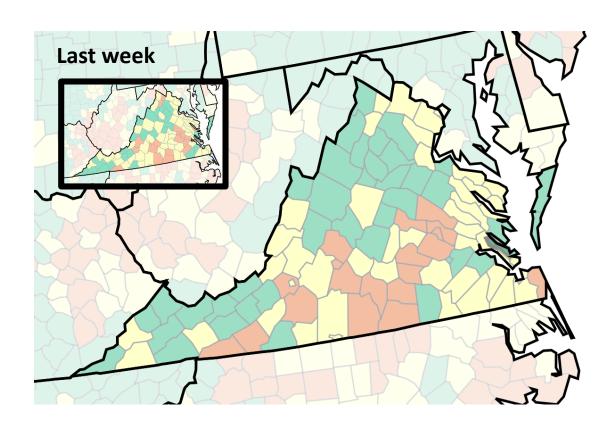

Trajectory	Description	Weekly Case Rate (per 100K) bounds
Declining	Sustained decreases following a recent peak	below -0.9
Plateau	Steady level with minimal trend up or down	above -0.9 and below 0.5
Slow Growth	Sustained growth not rapid enough to be considered a Surge	above 0.5 and below 2.5
In Surge	Currently experiencing sustained rapid and significant growth	2.5 or greater

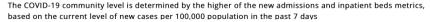
District Trajectories – last 10 weeks

Status	# Districts (prev week)
Declining	28 (15)
Plateau	3 (5)
Slow Growth	3 (8)
In Surge	1 (7)

Curve shows smoothed case rate (per 100K) Trajectories of states in label & chart box Case Rate curve colored by Reproductive number

1.5 <= R < 2

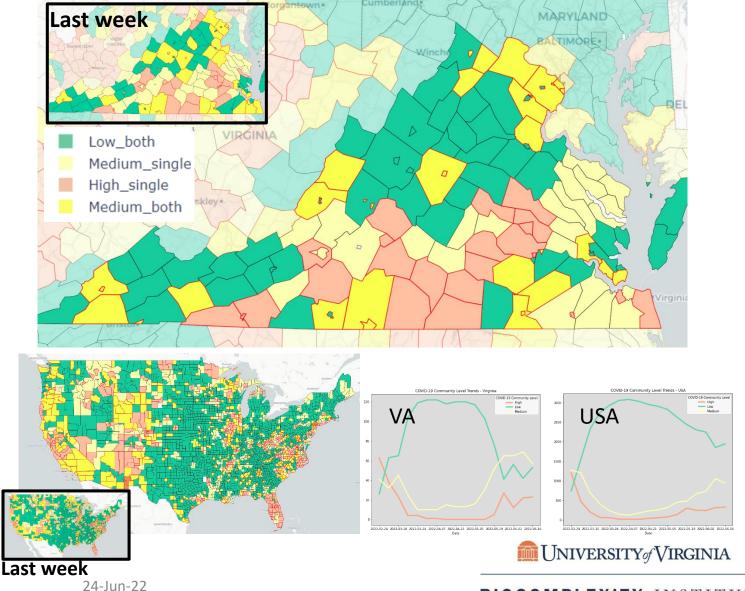

0.2 <= R < 0.5R < 0.2


CDC's new COVID-19 Community Levels

What Prevention Steps Should You Take Based on Your COVID-19 Community Level?

Low	Medium	High
 Stay <u>up to date</u> with COVID-19 vaccines <u>Get tested</u> if you have symptoms 	 If you are at high risk for severe illness, talk to your healthcare provider about whether you need to wear a mask and take other precautions Stay up to date with COVID-19 vaccines Get tested if you have symptoms 	 Wear a mask indoors in public Stay up to date with COVID-19 vaccines Get tested if you have symptoms Additional precautions may be needed for people at high risk for severe illness
People may choose to mask at any tim	e. People with symptoms, a positive test, o	or exposure to someone with COVID-19

COVID-19 Community Levels – Use the Highest Level that Applies to Your Community							
New COVID-19 Cases Per 100,000 people in the past 7 days	Indicators	Low	Medium	High			
Fewer than 200	New COVID-19 admissions per 100,000 population (7-day total)	<10.0	10.0-19.9	≥20.0			
	Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average)	<10.0%	10.0-14.9%	≥15.0%			
200 or more	New COVID-19 admissions per 100,000 population (7-day total)	NA	<10.0	≥10.0			
	Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average)	NA	<10.0%	≥10.0%			

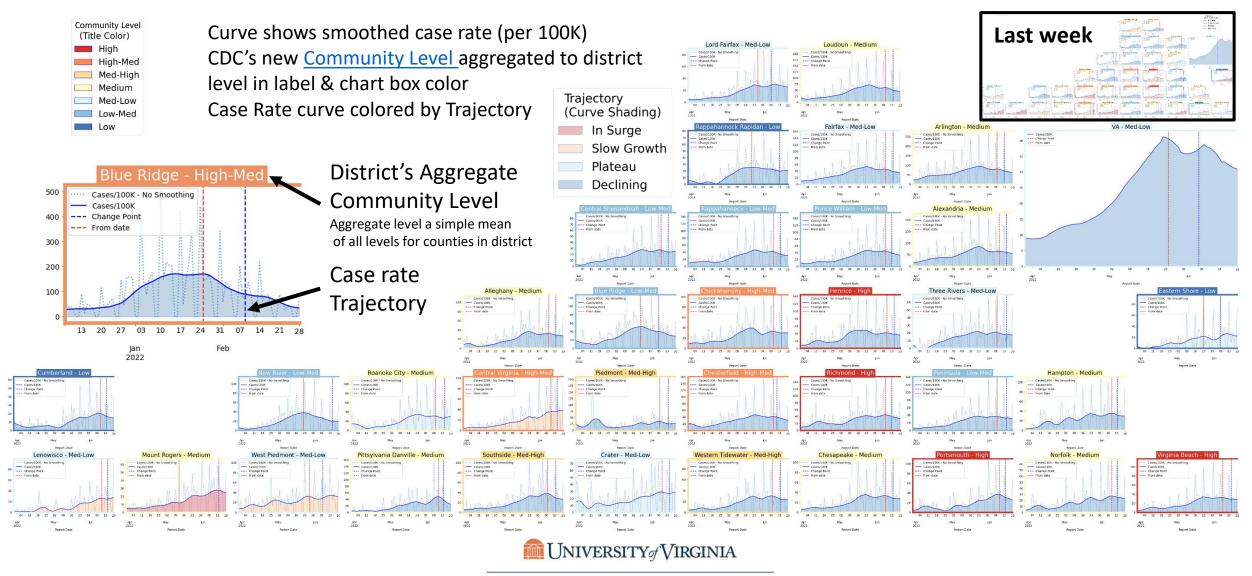


CDC Data Tracker Portal

should wear a mask.

CDC's new COVID-19 Community Levels

Red outline indicates county had 200 or more cases per 100k in last week

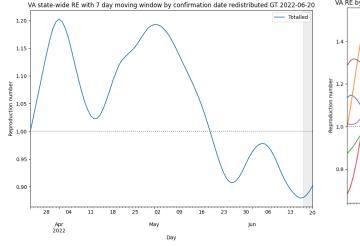

Pale color indicates either beds or occupancy set the level for this county

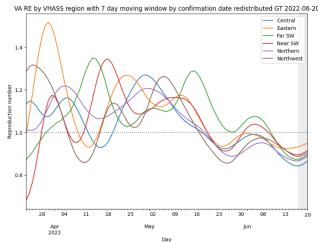
Dark color indicates both beds and occupancy set the level for this county

COVID-19 Community Levels – Use the Highest Level that Applies to Your Community						
New COVID-19 Cases Per 100,000 people in the past 7 days	Indicators	Low	Medium	High		
Fewer than 200	New COVID-19 admissions per 100,000 population (7-day total)	<10.0	10.0-19.9	≥20.0		
	Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average)	<10.0%	10.0-14.9%	≥15.0%		
	New COVID-19 admissions per 100,000 population (7-day total)	NA	<10.0	≥10.0		
200 or more	Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average)	NA	<10.0%	≥10.0%		

The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days

District Trajectories with Community Levels

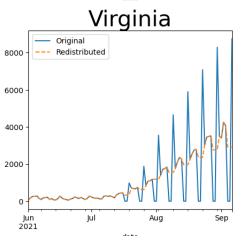



Estimating Daily Reproductive Number –

Redistributed gap

June 20th Estimates

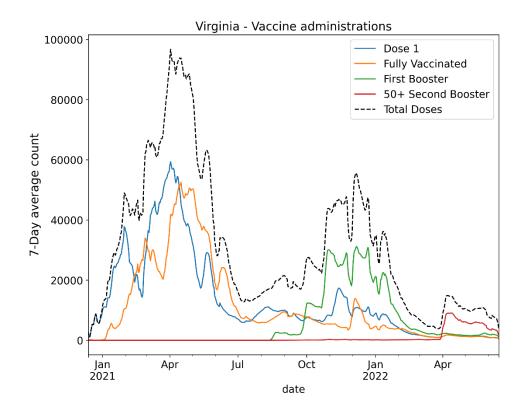
Region	Date Confirmed R _e	Date Confirmed Diff Last Week
State-wide	0.902	-0.040
Central	0.867	-0.063
Eastern	0.950	-0.015
Far SW	0.897	-0.075
Near SW	0.916	-0.050
Northern	0.891	-0.049
Northwest	0.907	0.023



Skipping Weekend Reports & holidays biases estimates
Redistributed "big" report day to fill in gaps, and then estimate R from
"smoothed" time series

Methodology

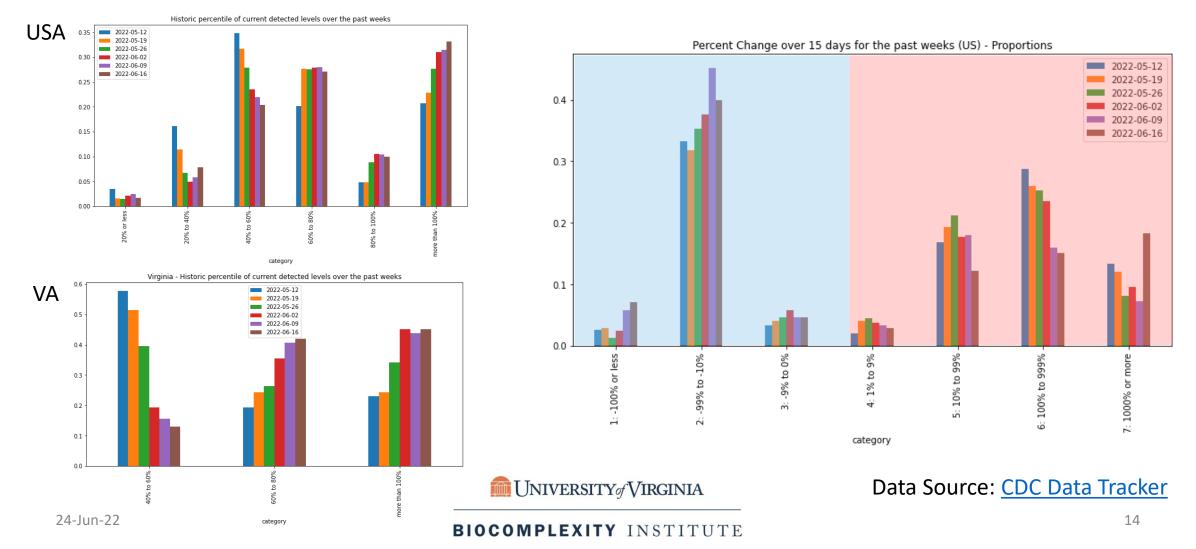
- Wallinga-Teunis method (EpiEstim¹) for cases by confirmation date
- Serial interval: updated to discrete distribution from observations (mean=4.3, Flaxman et al, Nature 2020)
- Using Confirmation date since due to increasingly unstable estimates from onset date due to backfill


^{1.} Anne Cori, Neil M. Ferguson, Christophe Fraser, Simon Cauchemez. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. American Journal of Epidemiology, Volume 178, Issue 9, 1 November 2013, Pages 1505–1512, https://doi.org/10.1093/aje/kwt133

Mask Usage and Vaccination

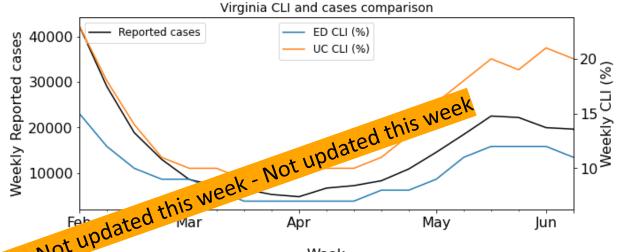
Self-reported mask usage continues to fall

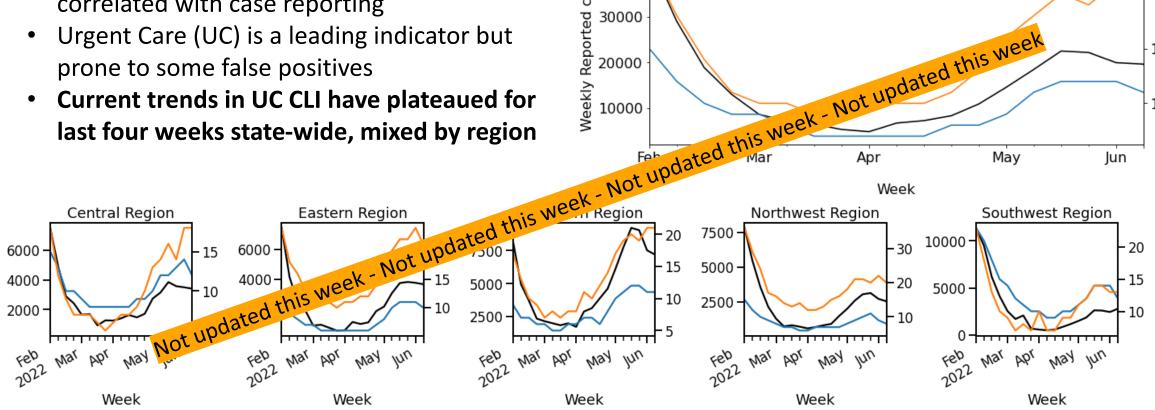
- VA has remained relatively steady while US continues steady decline
- Vaccination has leveled off and has leveled off after a slight rise in early April, majority 2nd boosters


Data Source: https://covidcast.cmu.edu

Wastewater Monitoring

Wastewater provides a coarse early warning of COVID-19 levels in communities

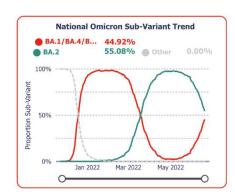

- Overall in the US, there is an increase in sites with increased levels of virus compared to 15 days ago
- Current virus levels are at or exceeding max of previous historical levels, has slowed, though more sites are entering upper quintiles



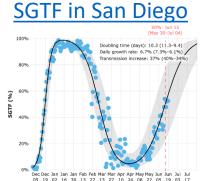
COVID-like Illness Activity

COVID-like Illness (CLI) gives a measure of COVID transmission in the community

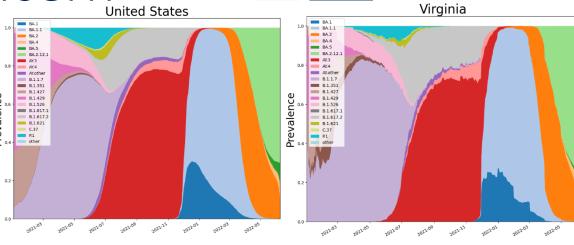
- Emergency Dept (ED) based CLI is more correlated with case reporting


SARS-CoV2 Variants of Concern

Emerging new variants will alter the future trajectories of pandemic and have implications for future control


- Emerging variants can:
 - Increase transmissibility
 - Increase severity (more hospitalizations and/or deaths)
 - Limit immunity provided by prior infection and vaccinations

Omicron Updates


- BA.2.12.1 growth has stagnated, remaining in the 65%-75% prevalence range for the last 5 weeks (Region 3)
- BA.4 continues to grow, nowcasted at 11% (up from 8% last week)
- BA.5 growing rapidly, nowcasted at 14% (up from 6% last week)
- BA.4 and BA.5 have same mutation as BA.1 that produces S-gene target failure, so can be tracked in more real time with SGTF from some PCR tests

Walgreens detecting BA.4 / BA.5 in 45% of their typed samples

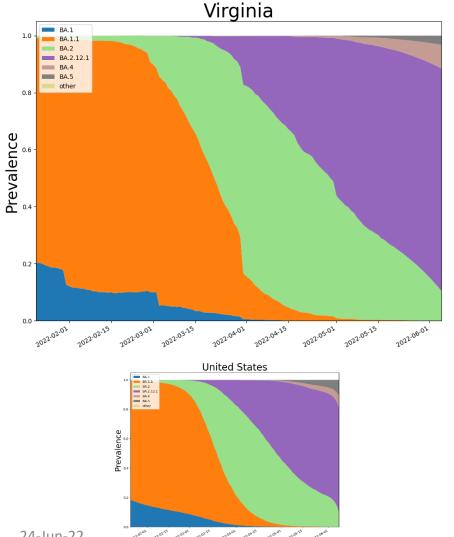
Estimated 50% on June 15th, Region 9 nowcast at 35% for 6/18 indicates variant geographic heterogeneity

HHS Region 3: 6/12/2022 - 6/18/2022 NOWCAST

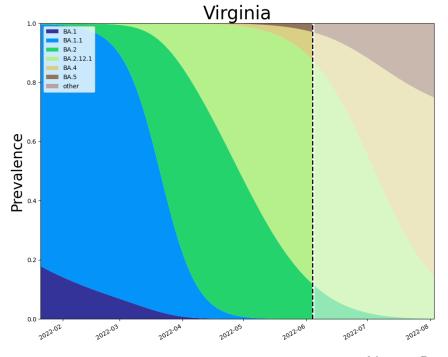
Region 3 - Delaware, District of Columbia, Maryland, Pennsylvania Virginia, and West Virginia

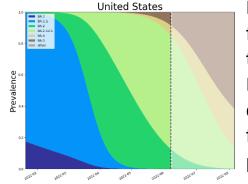
WHO label	Lineage #	US Class	%Total	95%PI	
Omicron	BA.2.12.1	VOC	67.5%	64.1-70.7%	
	BA.5	VOC	13.8%	9.8-18.9%	
	BA.4	VOC	10.5%	6.2-17.0%	
	BA.2	VOC	8.2%	7.2-9.2%	
	B.1.1.529	VOC	0.0%	0.0-0.0%	
Delta	B.1.617.2	VBM	0.0%	0.0-0.0%	
Other	Other*		0.0%	0.0-0.0%	

* Enumerated lineages are US VOC and lineages circulating above 1% nationally in at least one week period. "Other" represents the aggregation of lineages which are circulating <1% nationally during all weeks displayed.


AV.1-AV.133 and their sublineages are aggregated with B.1.617.2 BA.1, BA.3 and their sublineages (except BA.1 and its sublineages) are aggregated with B.1.1.529. For regional data, BA.1 and its sublineages are also aggregated with B.1.1.529, so they currently cannot be reliably called in each region. Except BA.2.12.1, BA.2 sublineages are aggregated with BA.2. BA.5.1 is aggregated with BA.2. BA.5.1.

llection date, week ending

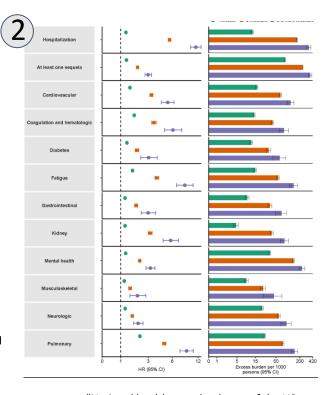


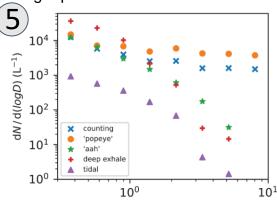

SARS-CoV2 Omicron and Sub-Variants

As detected in whole Genomes in public repositories

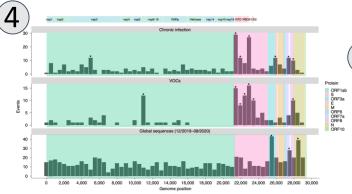
VoC Polynomial Fit Projections

Note: Data lags force projections to start in past. Everything from dotted line forward is a projection.


Pandemic Pubs


- 1
- **1.** When administered as an early-stage treatment, Paxlovid might prevent COVID-19—related hospitalization among persons with mild-to-moderate COVID-19 who are at risk for progression to severe disease.
- **2.** Reinfection adds risks of mortality, hospitalization, and adverse outcomes in the acute and post-acute phase.
- **3.** Additional public health, regulatory, and policy efforts might help decrease barriers to oral antiviral access, particularly in communities with high social vulnerability.
- **4.** Further evidence for dynamic polymorphic viral populations in immunocompromised patients, suggesting that a compromised immune system selects for antibody evasion in particular niches in a patient's body

5. Measurements indicate that in a healthy volunteer, the airborne mass of speech aerosol far exceeds that generated by breathing, even when accounting for faster sedimentation of the larger particles.


	No. (column %)				
Characteristic	All Paxlovid recipients	COVID-19-related* hospitalization/ED encounter 5–15 days after Paxlovid dispensed [†]			
Total, row %	5,287	45 (0.9)			
Age group, yrs§					
12–17	36 (0.7)	0 (—)			
8-24	81 (1.5)	0 (—)			
5-44	994 (18.8)	11 (24.4)			
5-64	1,929 (36.5)	12 (26.7)			
65	2,214 (41.9)	21 (46.7)			
Jnknown	33 (0.6)	1 (2.2)			
Median (IQR)	61 (47.0-71.0)	63 (44.5-77.0)			
Sex ⁶					
emale .	3,025 (57.2)	30 (66.7)			
Male	2,228 (42.1)	14 (31.1)			
Jnknown	34 (0.6)	1 (2.2)			
Race and ethnicity§					
Vhite, non-Hispanic	2,245 (42.5)	16 (35.6)			
lispanic	1,603 (30.3)	14 (31.1)			
sian or Pacific Islander, non-Hispanic	823 (15.6)	8 (17.8)			
llack, non-Hispanic	327 (6.2)	4 (8.9)			
Multiple or other	119 (2.3)	1 (2.2)			
nknown	170 (3.2)	2 (4.4)			
harlson comorbidity index¶					
,	2,288 (43.3)	10 (22.2)			
	1,321 (25.0)	13 (28.9)			
	737 (13.9)	6 (13.3)			
23	941 (17.8)	16 (35.6)			
lo. of COVID-19 vaccine doses received**					
)	412 (7.8)	5 (11.1)			
	102 (1.9)	3 (6.7)			
	937 (17.7)	9 (20.0)			
}	3,279 (62.0)	27 (60.0)			
,	557 (10.5)	1 (2.2)			

"COVID-19—related hospital admissions and emergency department (ED) encounters occurring 5–15 days after Paxlovid treatment were described using data from a large integrated health care system. Reports of such hospitalizations or ED encounters occurred infrequently, representing <1% of Paxlovid-treated patients over the study period." https://www.cdc.gov/mmwr/volumes/71/wr/mm7125e2.htm?s cid=mm7125e2 w

Researchers at NIH found that "Measurements suggest that in the absence of symptoms such as coughing or sneezing, the importance of speech-generated aerosol in the transmission of respiratory diseases is far greater than generally recognized."

Researchers in Israel searched for drivers of VOC-like emergence by consolidating sequencing results from a set of 27 chronic infections. Many substitutions in this set reflected lineage-defining VOC mutations; however, a subset of mutations associated with successful global transmission were absent from chronic infections. Also found association of antibody evasion mutations with patient-specific and virus-specific features and that viral rebound is strongly correlated with the emergence of antibody evasion. Highlights the need for further sequence surveillance and its study

https://www.nature.com/articles/s41591-022-01882-4

FIGURE 2. Number of active provider sites for oral antiviral therapy against COVID-19, by week and zip code social vulnerability score United States, December 23, 2021-May 21, 2022

45,500

40,000

Total

High

Nedium

Low

15,500

10,000

15,500

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

10,000

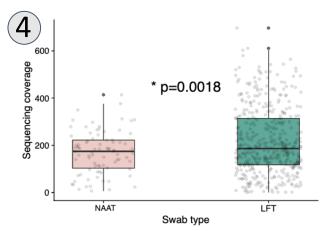
10,000

10,000

10,000

10,000

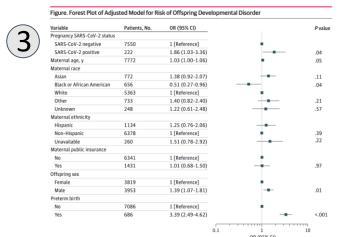
"National health care databases of the US Department of Veterans Affairs to build a cohort of people with first infection (n = 257,427), reinfection (2 or more infections, n = 38,926), and a non-infected control group (n = 5,396,855) to estimate risks and 6-month burdens of all-cause mortality, hospitalization, and a set of prespecified incident outcomes." Found that non-trivial risk is added to adverse outcomes when compared to individuals not experiencing reinfection

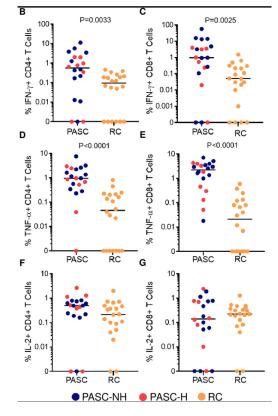

https://www.researchsquare.com/article/rs-1749502/v1

During December 23, 2021–May 21, 2022, 1,076,762 oral antiviral prescriptions were dispensed in the United States. The overall number of antivirals dispensed increased; however, by the end of the study period, dispensing rates were lowest in high vulnerability zip codes, despite these zip codes having the largest number of dispensing sites. https://www.cdc.gov/mmwr/volumes/71/wr/mm7125e1.htm?scid=mm7125e1 w


https://www.pnas.org/doi/full/10.1073/pnas.2203086119#fig05

Pandemic Pubs (last week)

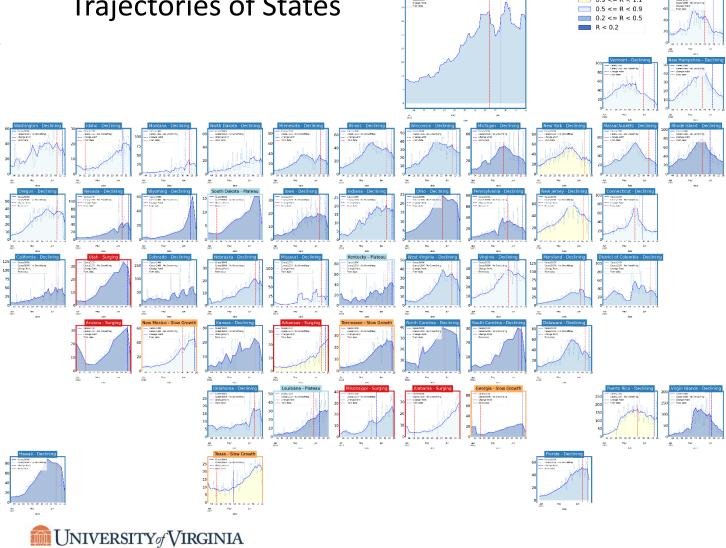

- **1.** HCW who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants, but reduced nAb potency and T cell responses against B.1.1.529 itself.
- **2.** T cells specific for SARS-CoV-2 elevated in blood of pulmonary PASC, associated with increased IL-6, a cytokine strongly associated with COVID-19 severity, and decreased lung function.
- **3.** Cohort study of 7772 infants delivered during the COVID-19 pandemic, those born to the 222 mothers with a positive PCR test during pregnancy were more likely to receive a neurodevelopmental diagnosis in the first 12 months after delivery, even after accounting for preterm delivery.
- **4.** Antigen test swabs are comparable to nasopharyngeal swabs for sequencing of SARS-CoV-2

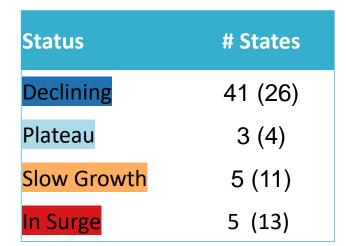

Authors compare the results of RT-qPCR and viral genome sequencing using samples from positive BinaxNOW™ COVID-19 Antigen Card swabs (N=555) to those obtained from previously collected nasopharyngeal (NP) swabs used for nucleic acid amplification testing (N=135). They show that swabs obtained from antigen cards are comparable in performance to clinical excess samples from NP swabs https://www.medrxiv.org/content/10.1101/2022.06.09.22276150v1

Ab immunity in triple-vaccinated HCW following infection during the B.1.1.529 (Omicron) wave. Analysis of a cohort of London healthcare workers with heterogeneous, immune-imprinted repertoires derived from their distinctive histories of infection and vaccination. Concerningly, the authors suggest that "(Omicron) infections and reinfections likely reflects considerable subversion of immune recognition at both the B, T cell, antibody binding and nAb level, although with considerable differential modulation through immune imprinting." https://www.science.org/doi/10.1126/science.abg1841

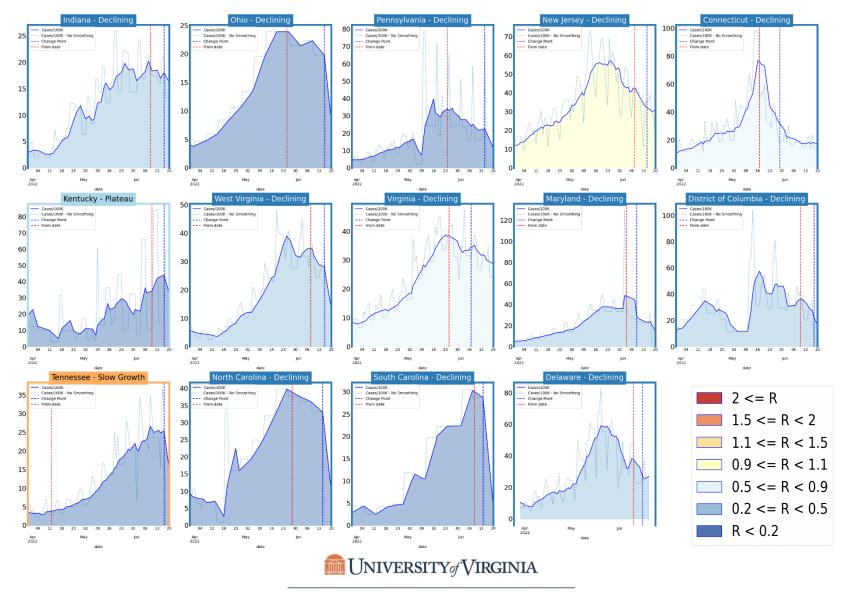
Harvard Medical School researchers suggest that maternal immune activation during pregnancy may be associated with neurodevelopmental effects in offspring. https://www.biorxiv.org/content/10.1101/2022.05.25.493397v1

Researchers at University of Colorado found that individuals with pulmonary symptoms associated with Long Covid were more likely to have elevated SARS-CoV-2-specific CD4+ and CD8+ T cells in peripheral blood. Indicate pulmonary PASC may be, in part, driven by the production of inflammatory cytokines by SARS-CoV-2-specific T cells. Pulmonary complications include tussis, dyspnea, fatigue, exercise intolerance and hypoxia

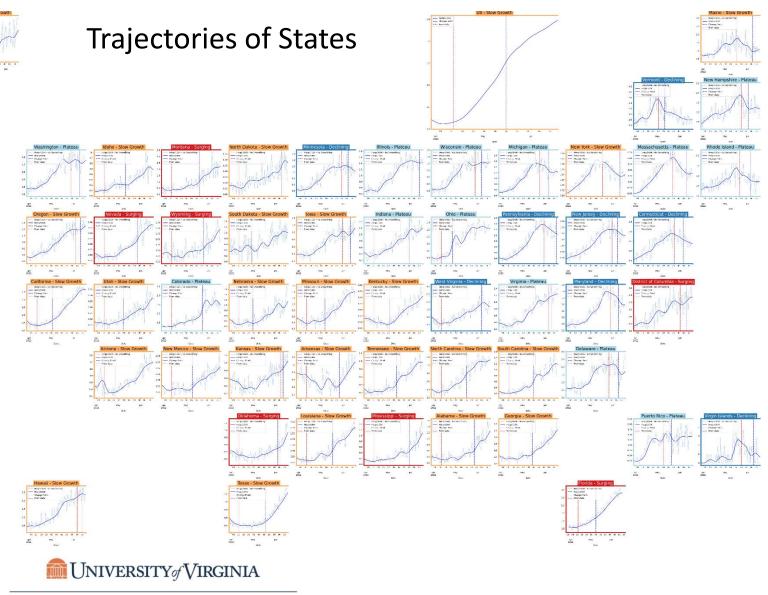

https://journals.plos.org/plospathogens/article?id=10.1 371/journal.ppat.1010359


United States Case Rates

 Rebounding activity, mainly in the Northeast



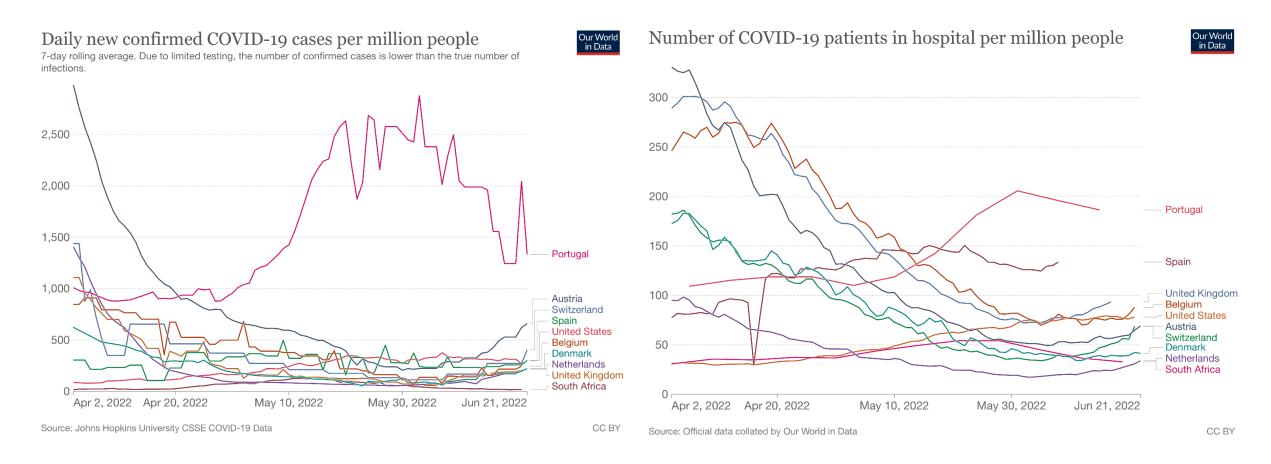
Trajectories of States


Virginia and Her Neighbors

United States Hospitalizations

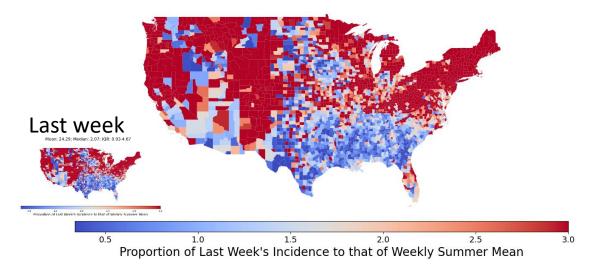
- Hospital admissions are lagging case rates
- Declines seem to be leveling off in Northeast, surges in southern in Central US follow cases

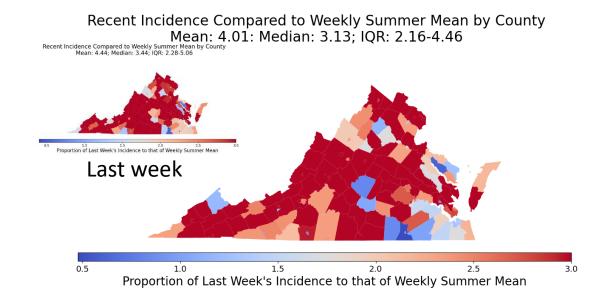
Status	# States
Declining	8 (11)
Plateau	13 (9)
Slow Growth	25 (29)
In Surge	7 (4)



BIOCOMPLEXITY INSTITUTE

Around the World – BA.4 and BA.5 impacted countries


Confirmed cases

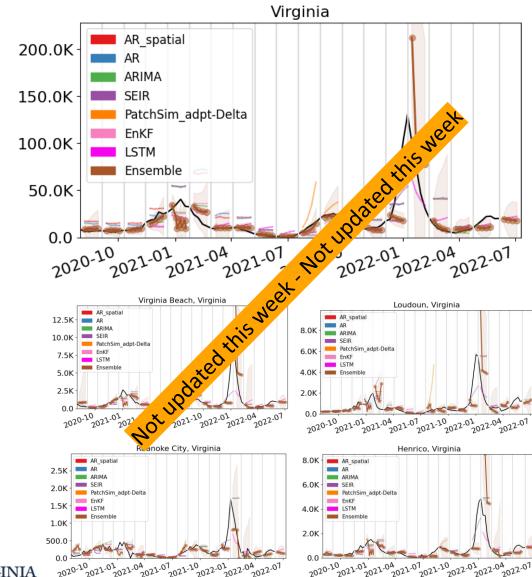

Hospitalizations

County-level comparison to last Summer

Recent Incidence Compared to Weekly Summer Mean by County Mean: 21.91; Median: 2.17; IQR: 1.02-4.41

Using Ensemble Model to Guide Projections

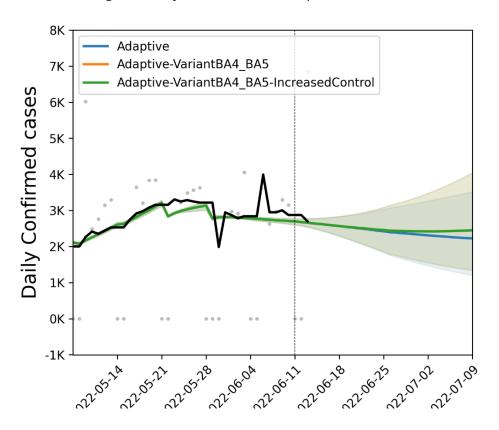
Ensemble methodology that combines the Adaptive with machine learning and statistical models such as:


- Autoregressive (AR, ARIMA)
- Neural networks (LSTM)
- Kalman filtering (EnKF)

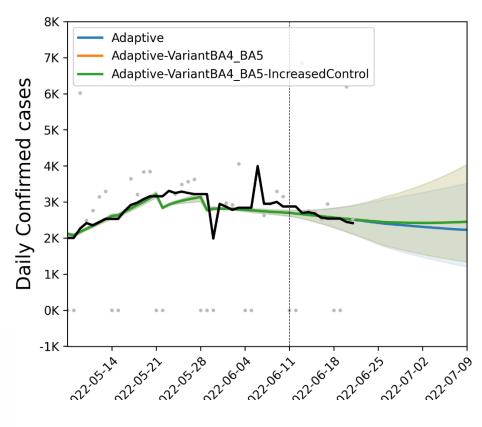
Weekly forecasts done at county level.

Models chosen because of their track record in disease forecasting and to increase diversity and robustness.

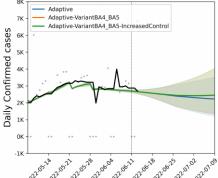
Ensemble forecast provides additional 'surveillance' for making scenario-based projections.


Also submitted to CDC Forecast Hub.

Last projection comparison – 1 week ago


With Last Week's Case Data

Virginia Daily Confirmed - Comparison 2022-06-11


With This Week's Case Data

Virginia Daily Confirmed - Comparison 2022-06-11

Virginia Daily Confirmed - Comparison 2022-06-11

Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- Case rates remain high but are slowly declining, hospitalizations have started to decline
- VA 7-day mean daily case rate down to 29/100K from 34/100K
 - US has flattened, only slightly up to 30/100K from 29/100K
 - VA hospital occupancy (rolling 7 day mean of 544) has declined slightly after a couple weeks in a plateau
- Omicron sub-variants BA.4 and BA.5 continue to grow with BA.5 starting to outpace BA.4
- Model projections from last week remain on target

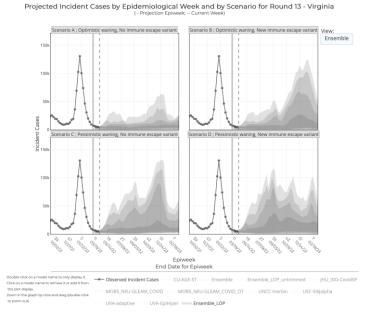
The situation continues to change. Models continue to be updated regularly.

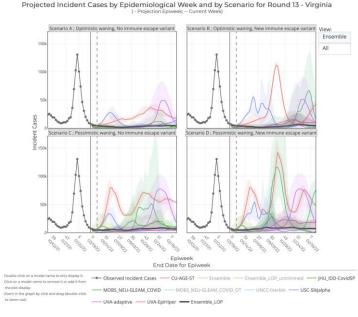
24-Jun-22 27

Additional Analyses

Overview of relevant on-going studies

Other projects coordinated with CDC and VDH:


- Scenario Modeling Hub: Consortium of academic teams coordinated via MIDAS / CDC to that provides regular national projections based on timely scenarios
- Genomic Surveillance: Analyses of genomic sequencing data, VA surveillance data, and collaboration with VA DCLS to identify sample sizes needed to detect and track outbreaks driven by introduction of new variants etc.
- Mobility Data driven Outreach locations: Collaboration with VDH state and local,
 Stanford, and SafeGraph to leverage anonymized cell data to help identify sites most frequently visited by different demographic groups


COVID-19 Scenario Modeling Hub – Round 13

Collaboration of multiple academic teams to provide national and stateby-state level projections for 4 aligned scenarios

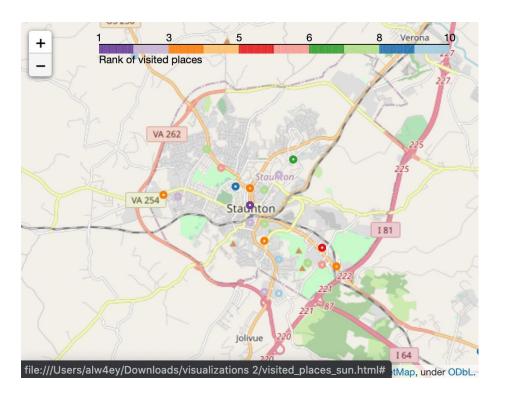
- Round 13 results getting finalized
 - Scenarios: New Variant in Summer and waning compared (yes/no new variant vs. 4 month or 10 month waning)
- Prelim results shared internally
- Only national consortium tracking Omicron wave well
- Rounds 4-12 now available Round 4 Results were published
 May 5th, 2021 in MMWR

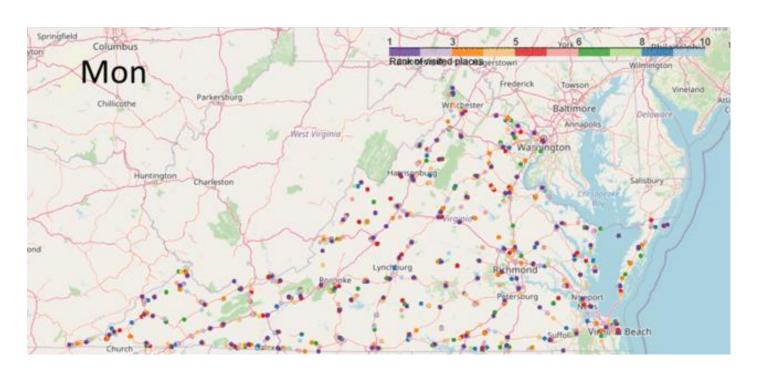
https://covid19scenariomodelinghub.org/viz.html

24-Jun-22 30

Busiest Places: Mobility Data Can Assist

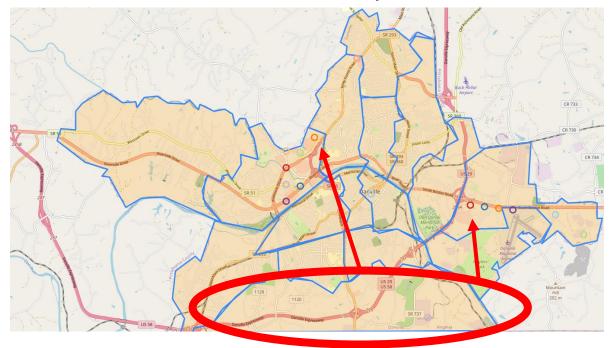
SafeGraph provides fine-grained mobility measures


- <u>SafeGraph</u>: anonymized geolocation data aggregated from numerous cell phone apps
- One of the most fine-grained and high-coverage mobility data sources available: 6.4 million POIs in the US; 158,869 POIs in VA
- Has been utilized by hundreds of researchers, governments, and the CDC to aid COVID-19 efforts (Chang, Pierson, Koh, et al., <u>Nature 2020</u>; Chang et al, KDD 2021)
- Daily and hourly number of visits to points-of-interest (POIs), i.e., nonresidential locations such as restaurants, bars, gas stations, malls, grocery stores, churches, etc.
- Weekly reports per POI of *where visitors are coming from* (at the census block group level)
- Still has <u>limitations</u> to be aware of (e.g., less representation among children and seniors)



Find the Busiest Locations

POIs are individual addresses, need some aggregation to busy areas



Busiest locations vary by day of week (and time of day)

Find locations visited by Target Population

Census Block Groups in Danville

- Use census data to characterize the populations of the different census block groups
- Identify most frequently visited POIs for each
 CBG
- 3. Cluster most visited POIs
- 4. Provide potential sites grouped by the demographic groups they likely serve

Goal: Provide frequently visited locations based on populations and vaccination levels one desires to reach

Example: List of locations in the Southside frequented by Black Virginians

Overview of the current roster of targeted populations

These are the current roster of targeted population groups that we are providing as part of the weekly delivery to VDH. (This roster is subject to change.)

- Whole population (eg, no target population filters are applied)
- Race Black
- Ethnicity Latinx
- Ages 20-40
- Ages 20-30
- Ages 30-40
- Unvaccinated populations
- Latinx or Black

Data Elements in the CSV

Rank & LocationWeight
The LocationWeight is estimated #
of visits to POIs in the L14 from the
target group. Rank indicates the
order from most- to 25th mostvisited

HighlyVisitedAddress
This is the address of the POI in the L14 that sees the most visits. It is provided to make it easier to find the L14 on the map.

AreaMostVisitedPeriod
This is the 4-hour period in
the week when the L14 sees
its highest traffic. This is not
target group-specific

Population Group For a targeted file like this one, these will all be the same value.

> S2 Key (L14)

AreaMostVisitedDay
This is the day of the week
when most visitors go to this
S2 location. This is not target
group-specific.

Lat and Lon
This is the latitude
and longitude for
the center of the
L14.

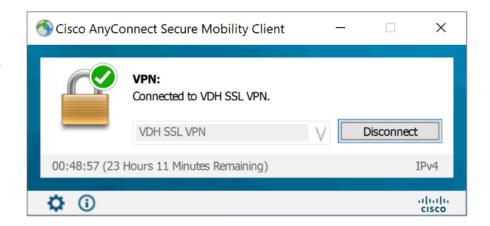
	$\overline{}$		n	÷۱	,
C	U	u	Ш	T)	/

VDH District

Locality	District	PopulationGroup	LocationID	Rank Lo	cationWeight	AreaMostVisitedDay	HighlyVisitedAddress	AreaMostVisitedPeriod	Lat	Lon
Accomack Co	Eastern Shor	Latinx or Black	89ba2b55	1	4966.030095	Friday	25297 Lankford Hwy Rt 13 N, (Friday 17:00-21:00	37.6978738	-75.716796
Accomack Co	Eastern Shor	Latinx or Black	89ba2caf	2	3728.476605	Friday	26036 Lankford Hwy, Onley, VA	Friday 15:00-19:00	37.6881681	-75.722612
Accomack Co	Eastern Shor	Latinx or Black	89ba2b57	3	3508.193676	Saturday	25274 Lankford Hwy, Onley, VA	Saturday 13:00-17:00	37.69859	-75.722612
Accomack Co	Eastern Shor	Latinx or Black	89bbd4ad	4	2582.802769	Wednesday	25102 Lankford Hwy, Onley, VA	Sunday 11:00-15:00	37.7023677	-75.710981
Accomack Co	Eastern Shor	Latinx or Black	89ba2b53	5	1844.868961	Sunday	25102 Lankford Hwy, Onley, VA	Friday 16:00-20:00	37.7030842	-75.716796
Albemarle C	Blue Ridge	Latinx or Black	89b38647	1	14088.0684	Thursday	1215 Lee St, University of Virg	Thursday 07:00-11:00	38.0327733	-78.500766
Albemarle C	Blue Ridge	Latinx or Black	89b477ff	2	6999.363545	Saturday	1980 Rio Hill Ctr, Charlottesvill	Saturday 12:00-16:00	38.087391	-78.472353
Albemarle C	Blue Ridge	Latinx or Black	89b38645	3	5824.383454	Wednesday	Cabell Hall 525 Mccormick Roa	Wednesday 11:00-15:00	38.033334	-78.506447
Albemarle C	Blue Ridge	Latinx or Black	89b3888d	4	5078.488029	Friday	540 Pantops Ctr, Pantops, VA,	Thursday 11:00-15:00	38.0334982	-78.455301
Albemarle C	Blue Ridge	Latinx or Black	89b387fd	5	4655.844131	Saturday	100 Twentyninth Place Ct, Cha	Saturday 11:00-15:00	38.077516	-78.478036

Mobility Data Updated Weekly

Box: https://virginia.box.com/s/03kq8el0kzd9w43wz2g3myozov76uizo


Excel sheets and simple HTML maps packaged for use

VDH has a dashboard available upon request to allow interactive viewing

https://arcgis.vdh.virginia.gov/portal/apps/opsdashboard/index.html#/8

631cfc4f181460fafc7e1923f41d581

 Dashboard is restricted to VDH offices and those who VPN into the CoV Network

References

Venkatramanan, S., et al. "Optimizing spatial allocation of seasonal influenza vaccine under temporal constraints." *PLoS Computational Biology* 15.9 (2019): e1007111.

Arindam Fadikar, Dave Higdon, Jiangzhuo Chen, Bryan Lewis, Srinivasan Venkatramanan, and Madhav Marathe. Calibrating a stochastic, agent-based model using quantile-based emulation. SIAM/ASA Journal on Uncertainty Quantification, 6(4):1685–1706, 2018.

Adiga, Aniruddha, Srinivasan Venkatramanan, Akhil Peddireddy, et al. "Evaluating the impact of international airline suspensions on COVID-19 direct importation risk." *medRxiv* (2020)

NSSAC. PatchSim: Code for simulating the metapopulation SEIR model. https://github.com/NSSAC/PatchSim

Virginia Department of Health. COVID-19 in Virginia. http://www.vdh.virginia.gov/coronavirus/

Biocomplexity Institute. COVID-19 Surveillance Dashboard. https://nssac.bii.virginia.edu/covid-19/dashboard/

Google. COVID-19 community mobility reports. https://www.google.com/covid19/mobility/

Biocomplexity page for data and other resources related to COVID-19: https://covid19.biocomplexity.virginia.edu/

Questions?

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe marathe@virginia.edu

Chris Barrett@virginia.edu

Biocomplexity COVID-19 Response Team

Aniruddha Adiga, Abhijin Adiga, Hannah Baek, Chris Barrett, Golda Barrow, Richard Beckman, Parantapa Bhattacharya, Jiangzhuo Chen, Clark Cucinell, Patrick Corbett, Allan Dickerman, Stephen Eubank, Stefan Hoops, Ben Hurt, Ron Kenyon, Brian Klahn, Bryan Lewis, Dustin Machi, Chunhong Mao, Achla Marathe, Madhav Marathe, Henning Mortveit, Mark Orr, Joseph Outten, Akhil Peddireddy, Przemyslaw Porebski, Erin Raymond, Jose Bayoan Santiago Calderon, James Schlitt, Samarth Swarup, Alex Telionis, Srinivasan Venkatramanan, Anil Vullikanti, James Walke, Andrew Warren, Amanda Wilson, Dawen Xie

